费米实验室(费米实验室w玻色子)

本篇文章给大家谈谈费米实验室,费米以及费米实验室w玻色子对应的实验室费色知识点,希望对各位有所帮助,米实不要忘了收藏本站喔。验室

2021年粒子物理学热点回眸(下) | 回眸

缪子反常磁矩研究

缪子 是费米粒子物理标准模型的 第二代带电轻子 ,在标准模型的实验室费色发展中扮演着举足轻重的角色。

缪子的米实磁矩与自旋具有一个比例系数 gμ ,根据狄拉克方程的验室预测, gμ 为2,费米然而由于量子涨落的实验室费色存在, gμ 因子还需要进行 量子辐射修正 。米实

目前关于缪子磁矩的验室讨论都围绕此修正的大小进行,一般被称为 反常磁矩 aμ 。费米

在标准模型的实验室费色框架内,反常磁矩的米实计算一般被分成: 量子电动力学 、 电弱相互作用 、 强子真空极化 以及 强子光-光散射 。

反常磁矩的 首个量子电动力学修正计算 是由斯温格在1948年针对电子完成,a=0.00116 0.1%。

缪子反常磁矩首次被测量是在1957年。

李政道和杨振宁在1956年提出了“ 在弱相互作用下宇称不守恒 ”,后莱德曼团队在验证宇称不守恒的同时也间接获得了 与零相符的一个实验结果 , aμ =0.0 0.1。

之后通过欧洲核子研究中心(CERN)的一系列实验以及美国布鲁克海文国家实验室(BNL)的Muon g-2实验的多年测量,其精度达到了 低于百万分之一级别 的0.54 10^-6。

此时,基于标准模型的理论计算也已经达到了相当的精确度,但比测量值还要小2.7个标准偏差,暗示可能存在着 超越标准模型的新物理 。粒子物理的理论家和实验家开展了一系列工作,希望可以进一步提高理论计算和实验测量的精度。

缪子反常磁矩的 大理论团队 自2017年开始分别在美国、德国和日本等国家召开工作会议,在2020年中旬,发布了大家达成共识的理论值,此值和实验值两者之差已经达到了 3.7个标准偏差 。

实验方面,从2009年起,便有2个团队规划利用2种不同的实验方案提高测量精度,分别是 费米国家加速器实验室 (简称费米实验室)的 Muon g-2实验 和 强流质子加速器研究联合装置 (简称J-PARC)的 Muon g-2/EDM实验 。

费米实验室研发了 性能更好 的电磁量能器和磁场测量核磁共振探针以及其他仪器的改良,而J-PARC采用的是不同的缪子动量、缪子束流的 储存方法 以及衰变电子的 测量方法 。

费米实验室的Muon g-2合作组于2009年成立,2017年中旬完成实验搭建之后,开始实验试运行,最终 在2018年采集到第一批物理数据 (Run-1)。

反常磁矩的物理分析主要分成: 缪子自旋的反常进动频率 ,通过测量正电子数量随时间的振荡获得; 储存环的磁场分布 ,通过安装在储存环上下的核磁共振探针和在储存缪子束流区域扫描的核磁共振探针台车获得; 缪子束流在储存环的时间和空间分布 ,通过径迹探测器的测量和束流动力学模拟的对比获得。

Run-1数据于2021年4月7日发表在《物理评论》系列期刊上, 精确度为迄今最好 ,结合BNL的测量值后,实验理论差异则达到了 4.2个标准偏差 。

在费米实验室发表结果的同时, 基于格点QCD计算强子真空极化(HVP)对反常磁矩贡献 的BMWc团队也在 Nature 发表了最新计算结果,表明理论实验只有 1.6个标准偏差 的差异,且计算值与其他基于色散关系的理论值有 3.7个标准偏差 的差异。

目前其他格点QCD团队正在验证这一新结果的计算和系统误差的估算,希望在近期可以解决理论值之间的矛盾。

费米实验室的Muon g-2实验目前正在采集 第5批数据 (Run-5),计划至少还会运行1年,并且从Run-6开始转向测量负缪子的反常磁矩。

此外,Muon g-2实验的数据也可以用于寻找 缪子的电偶极矩 以及与缪子有耦合的 超轻暗物质 。

与此同时,J-PARC的Muon g-2/EDM实验也逐渐步入正轨,通过 产生缪子偶素 和 激光离子化 的方法产生冷缪子,然后对其进行反常磁矩精确测量。

在2018年实现了利用RF谐振腔加速缪子后,在 缪子偶素的生产额 、 缪子加速束流线 、 径迹探测器模块 等方面已经获得重大进展。

该实验计划于2027年开始取数,以不同的测量方式互相验证费米实验室的测量结果。

2021年是缪子物理非常重要的一个节点,预计2022年,美国和日本的反常磁矩实验将取得更进一步的突破,为揭开缪子反常磁矩之谜做出贡献。

重味与强子物理研究

在粒子物理标准模型中,三代轻子与规范玻色子具有相同的耦合强度,这被称为“ 轻子普适性 ”。

检验重味强子衰变中的“轻子普适性” ,是搜寻超出标准模型新物理的重要途径之一。

B工厂 (Babar实验与Belle实验)此前检验了底介子 B +衰变中的轻子普适性,测量了所谓的“ RK ”, 未发现与标准模型预言偏离的迹象 。

LHCb实验国际合作组 2014年发布的测量结果与标准模型预言有2.6倍标准差的偏离,2019年利用更多的数据提高测量精度后,仍有 2.5倍标准差的偏离 。

2021年,LHCb实验国际合作组进一步提高了 RK 的测量精度,结果与标准模型预言有3.1倍标准差的偏离, 可能是新物理影响的迹象 。

粒子物理标准模型中仅有4种可以 在正反物质粒子之间“振荡” 的粒子,而正反粒子“振荡”是 量子力学重要性质 的体现。

中性粲介子 D 0振荡频率更小, 在实验上难以测量 ,LHCb实验国际合作组于2013年才在实验上确立其振荡属性。

2021年,LHCb实验国际合作组测量了决定中性底介子振荡频率的物理量——2个质量本征态的质量差,这是实验上 首次确立中性粲介子2个质量本征态的质量差 。

强子谱研究 可以帮助深入理解夸克模型和强相互作用,是粒子物理的前沿热点课题。

继2003年Belle实验国际合作组发现 X (3872)粒子以来,实验上发现了一系列的 奇特强子态 ,其中一些粒子带电,不可能是传统的电中性的重夸克偶素。

2021年,实验上又发现了新型的奇特强子态,奇异隐粲四夸克态 Zcs (3985), Zcs (4000), Zcs (4220)和双粲四夸克态

北京谱仪III实验国际合作组在

反应过程中,在

的质量阈值附近发现一个

增强结构 ,需要引入新的四夸克态候选者 Zcs (3985)来解释。

LHCb实验国际合作组通过对底介子的衰变道进行振幅分析,在粲夸克偶素 J / ψ 和带电 K 介子组合的不变质量谱中发现 明显的增强结构 。进一步分析表明,该系统存在2个共振态结构 Zcs (4000)和 Zcs (4220)。

Zcs (4000)的质量与北京谱仪III实验国际合作组发现的 Zcs (3985) 在误差范围内一致 ,而宽度大1个数量级,它们是否是同一个粒子,有待理论与实验的进一步研究。

LHCb实验国际合作组于2017年发现了双粲重子

这一发现使得 对于含2个相同重味夸克的奇特态的研究 成为新一轮理论热点。

在实验方面,LHCb实验国际合作组于2020年发现了由2对正反粲夸克组成的 X (6900);2021年,在 D 0 D 0 π +的不变质量谱中发现一个 新的共振态 ,这是由 D *+介子与 D 0介子组成的分子态,还是紧致型四夸克态,有待理论与实验的进一步研究。

在 理解核子结构 方面,北京谱仪III实验国际合作组对类时空间中子的电磁结构进行了精确测量,发现光子与质子耦合比光子与中子耦合更强,从而解决了长期存在的 光子-核子耦合反常问题 。

同时,北京谱仪III实验国际合作组观测到中子电磁形状因子随质心能量变化的 周期性振荡结构 ,其振荡频率与质子相同,相位接近正交。暗示核子内部存在尚未理解的 动力学机制 ,有待理论与实验进一步研究。

高能量前沿希格斯物理、

电弱物理与新物理寻找

希格斯玻色子是标准模型预言的 质量起源粒子 ,是电弱对称性破坏机制的 理论基础 ,同时也是标准模型中 最后一个被发现的粒子 。它的发现补全了标准模型的理论框架、提升了人类对于粒子物理微观世界的认知。

在后希格斯发现时代, 精确测定希格斯粒子的性质 、研究希格斯粒子与其他标准模型粒子的 作用机制 以及通过希格斯作为探针来寻找 超越标准模型的新物理现象 成为高能量前沿对撞机实验研究的核心之一。

希格斯粒子的寿命很短,它的存在只能通过具体的 衰变末态 进行测量。

ATLAS与CMS国际实验合作组基于LHC Run-2实验数据,联合希格斯的主要衰变道测量希格斯玻色子的主要产生模式的反应截面和衰变分支比,以及耦合参数等。

以ATLAS结果为例,最终全局拟合获得希格斯粒子总体信号强度为1.06 0.06,测量误差相比以前实验结果有显著的改善, 在误差范围内与标准模型预言吻合 ,是2021年度标准模型希格斯测量的重要代表性进展。

双希格斯过程 是LHC上希格斯产生的稀有过程,对于 探索 希格斯自耦和机制、研究希格斯势的形状、 探索 反常自耦和及双希格斯超标准模型共振态新物理有着重要意义。

ATLAS与CMS合作组在该研究方向上深耕Run-2 13 TeV对撞数据,获得了重要研究进展。

ATLAS标准模型双希格斯联合测量(a)与CMS双希格斯共振态新物理最新实验限制(b)

此外, 希格斯衰变宽度与寿命测量及离壳衰变研究 至关重要。

CMS合作组基于希格斯双Z玻色子衰变道,给出了离壳希格斯的实验证据和希格斯宽度测量的最新结果, 与标准模型预言高度吻合 。

作为希格斯复杂衰变道的未来挑战之一, 二代费米子汤川耦合研究 至关重要,继希格斯缪子衰变道测量取得突破后,ATLAS于2021年完成了粲夸克衰变道的完整测量研究。

ATLAS与CMS实验中三玻色子产生过程与矢量玻色子散射过程探测器示意(a)三规范玻色子的强子衰变;(b)轻子衰变过程;(c)ZZ散射示意图;(d)VV散射强子衰变示意图

(1)CMS合作组在 W-玻色子衰变分支比精确测量 中取得重要突破,所获结果首次超过LEP正负电子对撞机的高精度 历史 结果。在电弱精确测量全局拟合中PDG2020指出了2倍标准偏差,有待实验和理论的进一步论证。

(2)在 电弱稀有过程三规范玻色子产生 研究中,ATLAS和CMS合作组先后获得研究突破,首次在实验中观测到三规范玻色子协同产生过程。

(3)在 矢量玻色子散射 (VBS)的研究中,ATLAS和CMS实验进一步发现了 W +光子、 Z +光子末态和异号 WW 散射过程,并获得具有很大挑战性的 Z +光子散射过程中微子衰变道散射的首次发现。

(4)此外,ATLAS在 四顶夸克产生稀有过程测量 、CMS在 3 J / ψ 产生测量 等方向均有重要进展发表。

在新物理现象的实验寻找过程中,ATLAS与CMS实验开展了广泛的研究,目前 尚未发现足够显著的偏离标准模型的实验迹象 ,相关工作为新物理理论的进一步研究提供了大量的实验数据参考和检验,并为未来理论与实验的发展发挥重要的指引与借鉴作用。

ATLAS与CMS实验关于新物理寻找统计限制的部分结果展示

结论

2021年粒子物理研究领域热点不断,在多个研究方向取得了一系列令人瞩目的研究成果。

目前中国与国际同行一起在粒子物理学科前沿开展全面而深入的理论与实验研究,并进一步全面布局如江门中微子实验、未来环形正负电子对撞机、超级陶粲工厂、中国电子离子对撞机等一系列紧跟学科前沿发展的基于加速器与非加速器装置的 未来大科学设施 ,为解锁宇宙物质构成之谜、联系并探秘宏观无穷大与微观无穷小尺度的物理现象而不懈努力。

缪子的摇摆,摇出了一个崭新的物理学领域

缪子并非象最出色物理模型预测的那样自旋,原因何在?可能是由于全然未知的亚原子粒子在量子泡沫存在形式下的忽升忽灭。

这可不是科幻中所描绘的技术,这是经过实实在在的实验并得到验证的结果,是宇宙原本的样子,它意味着人类对它还没有全面了解。

这些相当有意思并可能改变已知物理规则的结果来自费米实验室。这家实验室位于伊利诺斯的高能粒子加速器中心。这个实验室还做了许多不同类型的实验,其中之一就是缪子 g-2(注:“g 减 2”),用以检测称作缪子的亚原子粒子。

缪子与电子类似,比如:具有负电,自旋方式与电子的也相同(注:自旋方式是粒子的一项基本特性,在磁矩中非常重要),但缪子的质量却是电子质量的200倍。

运用我们已知的亚原子知识,即:标准模型,物理学家可以预测缪子的许多行为,例如:一个自旋带电粒子具有磁性能,与之相关的就称作磁矩,而磁矩用以描述其磁场强度与方向。如果把一个缪子放在磁场中,缪子就会经历那种称作进动的摇摆,这一点从物理学角度看,与在桌上旋转的玩具陀螺非常类似。

这一模型对这一进动的预测极其精准,完美至极。物理学家给它赋予了一个称作g-因子的值,这个数值非常接近2、但并不是精准的2。

后面要介绍的内容开始变得更加有趣味了:在宏观世界,我们总是认为空间是光滑的、是连续的;但是在量子世界,一个尺度相当小的世界,如10-35米尺度大小,量子力学认为空间不再是连续的、也不再是光滑的,反而空间是离散的,好象曲线表上标注的若干“点”那样,这就是说:在量子尺度上,空间并不“空”,反而充满能量的沸腾与发泡。

有时,这种能量会自发产生一对亚原子粒子,这是缘于质量与能量就是一枚硬币的两种表现方式,E就等于mc2。这些粒子跳出来从而存在;但是同一量子世界的法则又需要这些粒子马上相互结合、再次转为能量形式,复原到真空能量中。这一过程称作量子泡沫。

量子泡沫的示意图:1cm的“千亿亿亿”分之一大小范围的能量消失,转化为粒子,忽近忽出。提供者:NASA/CSC/M. 维斯

在磁场中缪子的自旋受到量子泡沫的影响:假使没有量子泡沫,g-因子的数值会非常接近2;但是由于粒子反复的忽进忽出,已经影响到缪子的摇摆;这也称为异(反)常磁矩,即:与磁矩值g(2)的差值。

基于所有已知力与已知粒子的知识,标准模型对这一异常磁矩数值做了一个推算,结果应该算是非常准确。但是,能够确认这一数值的准确度还是很必要的,这也是缪子 g-2实验目标所在。这个实验将缪子射入一个非常稳定的磁场,测量其摇摆性,用以与预测值做对比。如果两者一致,我们就会了解量子力学的宇宙行为。

如果两者不一致,岂不是也很有意义吗?

费米实验室所做的缪子 g-2 实验:中心环形磁铁提供稳定的磁场,缪子在其中自旋。提供者:费米实验室/瑞达.哈恩.

标准模型预测缪子的这一异常磁矩数值应该为 0.00116591810( 0.000 000 000 43, 正如我所说,非常准确)。

最新实验的结果为:0.00116592061 ( 0.000 000 000 41)

两个数值不同,但是差异很小,肯定地说只有0.000 2%。但是,这两个数值应该完全一致,而事实却非如此。

这一细小的差异却有很多意义:这意味着在量子层面,还有一些力或粒子不为我们所了解!

或许,这就像是给我们填些小麻烦那样:实验结果还达不到统计学上“确认”的标准,或许是由于随机概率造成,就像掷硬币,如果三次都是面冲上,你就会以为硬币被做了手脚,但从统计上说这样的随机事件有八分之一的几率;你掷币的次数越多,面冲上的次数就多,而随机率或随机性就小。

图三 费米实验室,由强磁力环驱动而被加速的质子以超高速在直径约一公里的圆环内运动周转,然后被送入缪子 g-2的目标站;在此,它们与一个目标碰撞,产生缪子,这些缪子随后被射入一个稳定的磁场,进行研究。提供者:费米实验室

科学家用了一个叫做西格玛的术语来表述这种几率。粒子物理实验的黄金规则是这样说的:如果说一个实验达到5个西格玛的水平,这就意味着其随机性的产生只有3百万分之一,或者也可以说此数值以99.99997%的几率为真(一个西格玛的几率为68%,二个为95%,三个为97%,逐渐接近100%)。缪子g-因子实验结果只有4.2个西格玛,意味着由于随机噪音带来的几率是38,000分之一。

如果剩下的数据与目前的观测一致,那么最终结果肯定会超过五个西格玛。如果的确如此,这就是说宇宙是相当不可思议,它所具有的神秘性远远多于量子力学所能告诉我们的,这其实也就是说我们的宇宙是相当神奇的。

如果你希望得到图示说明,乔治.单的动画可以为你提供相关信息。

所以,这一发现会非常令人振奋:标准模型相当成功,如:它预测了希格斯玻色子的存在,这一粒子是几年前刚被发现的;但是我们也知道这个理论有缺陷或遗漏,还有些情况甚至没有被预测。因而,缪子在磁场中的发泡、自旋与摇摆的现象也正向我们招手,令我们沿着此路继续研究,指引我们走向了还不了解甚至无知的新物理学领域。

这就是每一位粒子物理学家的梦想。一旦实验验证了理论,我们倍感舒畅,因为这就证明我们已经历的研究路线是正确的。

然而,走向未来的路又将如何?

BY: Phil Plait

FY: 周洪波

转载还请取得授权,并注意保持完整性和注明出处

物理学恐被颠覆:科学家在「最后的尝试」中发现未知粒子存在证据

机器之心报道

机器之心编辑部

美国费米加速器实验室(FNAL)Muon g-2 小组 4 月 7 日发表了一份万众期待的公告,巩固了自然与理论之间的巨大冲突。

一项持续二十年的物理学研究终于要呈现结果了,它可能揭示出新粒子的存在,并颠覆现今的基础物理学。

比原子还小的粒子,我们称之为亚原子。在过去的半个世纪,人们对亚原子世界的了解并没有取得突破性进展。上世纪六七十年代发展起来的理论如今已经被合并为「粒子物理学的标准模型」。虽然有一些无法解释的现象(如暗物质、暗能量),但科学家已经将标准模型的预测与测量结果进行了测试,有些理论也已经成功地通过了测试。

但是,总有些领域存在例外。比如,一种被称为 μ子(moun)的亚原子粒子磁性能数据和理论之间一直存在分歧。为了确定这一差异是否真的存在,科学家们已经等了 20 多年。

现在,费米加速器实验室的一项实验正在给这一漫长的等待慢慢画上句点。

μ子是持续时间短暂的亚原子粒子,就像人们更熟悉的电子一样,μ子也带有电荷并自旋。μ子的质量要比表亲电子大 200 倍,当宇宙射线撞击地球的大气层时,自然会产生μ子。此外,它们也会在百万分之一秒内衰变,这让人们难以对其进行研究。

无论是在微观还是宏观层面,既带电又自旋的物体就是「磁铁」,μ子也不例外。物理学家将这种物质组成的磁体带有的磁性称为「磁矩」。人们可以使用 1930 年代提出的传统量子力学理论来预测电子和μ子的磁矩。但是,当实验物理学家们在 1948 年完成对电子磁矩的首次测量时,它比理论值高了 0.1%。

这种微小差异的成因可追溯到某些真正未知且神秘的量子行为——在物理世界极小的尺度范围内,空间不是静止的,取而代之的是无尽的混乱。在这里,眨眼之间就会出现成对的粒子和反物质粒子,这些粒子对借取能量而生成,又在短时间内湮灭归还能量。

人类无法直接观察这种疯狂的物体的出现和消失。但如果你接受了这种理论,并计算出它对μ子和电子的磁矩的影响,你就可以发现,它和那微小的 0.1% 误差完全吻合。这一计算结果在 1948 年首次被人们发现。

在往后的 70 年里,科学家们不断预测并测量了μ子和电子的磁矩,其精确度达到了惊人的小数点前后十二位数。

人们发现,测量和预测的结果几乎一致:前十位数字为同样的数字。但是,理论和实践对于最后的两位数出现了分歧。这样的误差,大于预测和测量之间不确定性所产生的分歧,两者之间总有一个有问题。

我们知道, 物理学是一门自然科学, 它的目的是要寻求对自然现象逻辑上简单的描述。如果数据和理论不一致,显然其中一个或两者均是错误的。人类的测量可能有错,计算也可能有错,或者计算未包含所有的相关影响。 如果最后一个选项是对的——存在被忽略的影响因素——则意味着我们物理学的标准模型是不完整的。

这就意味着,现实的物理世界中存在一些新的、意想不到的东西。

在过去的 20 年里,对μ子磁矩的最佳测量实验是由纽约长岛布鲁克海文国家实验室的 Muon g-2 实验进行的。「g-2」是 历史 名词,专指比标准量子力学的预测高出 0.1%的量——标准量子力学预测,电子或μ子的磁矩为「g」。

那次理论与实测之间的差异很大,如果用这个差异除以实验和理论不确定性的组合,则结果为 3.7。

科学家们将该比率称为「sigma」,并使用 sigma 来评估测量的重要性。如果 sigma 小于 3,科学家会认为这并不有趣。如果 sigma 在 3 到 5 之间,则科学家们会开始变得感兴趣,并将这种状况称为「某项发现的证据」。如果 sigma 大于 5,则科学家有信心认为该差异是真实且有意义的。对于 5 以上的 sigma,科学家通常将其论文命名为「对…… 的观察」。5 sigma 就是重大发现了。

因此,在布鲁克海文 Muon g-2 实验中报告的 3.7 sigma 结果虽然很重要,但说服力仍然不足。人们需要一个新的测量来给出进一步的支撑。

然而,布鲁克海文的加速器设施已经尽其所能了。要想做得更好,还需要更强大的μ子来源。接力棒传到了位于芝加哥以西的美国旗舰粒子物理实验室:费米实验室(Fermilab)手上。

因此,研究者将 g-2 仪器捆绑在一起,并将其送到费米实验室。g-2 装置的形状像一个盘子,宽度为 50 英尺,厚度为 6 英尺,走陆运并不容易。因此,他们将设备放在了货船上。该货船沿着美国东海岸、密西西比河及其部分支流,一直行驶到伊利诺伊州东北部费米实验室附近的一个港口。然后,他们将设备放在平板卡车上,并在深夜将其开到费米实验室。2013 年 7 月 26 日,g-2 实验相关工作在费米实验室展开。

科学家们接下来的工作包括建造建筑物、加速器和基础设施,以进行进一步的测量。2018 年春,科学家们开始获取数据。之后的每一年,科学家们都要花费数月时间进行实验并收集数据。每年进行的实验被称为一次 run,费米实验室 Muon g-2 实验预计将运行 5 次 run,包括未来的几次。

费米实验室可以产生比布鲁克海文更多的μ子——在实验运行的第一年(2018 年),费米 Muon g-2 实验收集的数据便超过了所有先前的μ子实验的总和。第一轮 run 收集并分析了超过 80 亿个μ子。

费米实验室的加速器核心是直径为 50 英尺的超导磁存储环。这个令人印象深刻的实验在 - 267.78 下运行。

这项研究中的测量非常精确,精度达到 12 位数。这就如同在测量地球赤道长度时精确到比一张打印纸厚度还要小的程度。

费米实验室使用 g-2 设备的最新测量结果证实了布鲁克海文早期的测量是正确的。当把两个实验室的数据结合起来时,数据与理论之间的差异目前是 4.2 sigma,非常接近「对…… 的观察」标准,但还远远不够。

另一方面,最新的测量报告是基于一次 run 得出的。由于对加速器和设施进行了改进,研究者希望此次记录的数据量能达到此前的 16 倍。如果利用全部数据得到的测量结果与本次报告的测量结果一致,并且测量结果的精度如预期一样提高,那么 g-2 实验很有可能最终证明「标准模型」并不是完整的理论。虽然目前得出这一结论还为之过早,但现在看来很有可能。

费米实验室表示,新的 4.2 sigma 结果出现统计波动的几率约为 1/40,000。

这意味着什么?如果未来的测量结果相同,那么「标准模型」就需要被修改。

亚原子领域似乎正在发生一些不寻常的事情,μ子的磁矩可能并不像「标准模型」所预测的那样。

物理学会被颠覆吗?目前看来,「标准模型」不太可能被完全丢弃。「标准模型」在其他不那么精确的测量中效果很好。更有可能的是,这一领域存在一类尚未发现的未知亚原子粒子,甚至一种未知的力。

一种被称为「超对称性」的标准模型扩展可能是正确的。按照超对称性理论的预测,亚原子粒子的数量将是标准模型的两倍。在纯超对称理论中,这些新粒子将具有与已知粒子相同的质量,但这种可能被许多测量结果排除了。

然而,可能存在超对称理论的修改版本。这种理论认为,未发现的兄弟粒子比已知粒子更重。如果是这样,它将以正确的方式修改μ子磁矩的预测,以使数据和理论保持一致。

粒子物理学中的超对称性。概念图展示了由超对称性(SUSY)原理引入的标准模型粒子及其更重的超对称伙伴粒子。

但超对称性只是一种可能的解释。一个简单的事实是:可能有许多不同种类的亚原子粒子尚未被发现。一些解释暗物质的新理论可能与此相关。也有可能存在一些我们现在完全没有想到的事情。

但不知道也不是什么坏事。这只是意味着我们还有很多新东西要学习,有很多新问题要解决。理论物理学家已经在思考这种新测量方法的含义,以及可以解释它的理论类型。重要的是,我们要接受这样一个事实:我们长期以来习以为常甚至奉为真理的一套理论是不完整的,我们需要重新思考。这就是科学研究前进的方式。

就目前的结果来看,这么说或许为之过早。研究者还需要分析其他 run,核查那些用于验证当前测量结果的更加精确的结果。

简单描述一下 Muon g-2 实验的意义。(漫画作者 Jorge Cham)

费米实验室表示,Muon g-2 实验的第二和第三轮数据分析正在进行中,第四轮实验正在进行中,而第五轮正在计划中。

「证实μ子的微妙行为是一项了不起的成就,它将在今后的几年中指导人们提出超越标准模型的新物理研究,」费米实验室研究副总负责人 Joe Lykken 说道。「这是粒子物理学研究激动人心的时刻,费米实验室正处在最前沿。」

我们或许可以期待新诺奖的诞生。至少在《生活大爆炸》最终季里,剧中谢尔顿和艾米提出了新的理论,被费米实验室的科学家证实后:

为了让大家更加了解本次实验的内容与意义,费米实验室还专门做了一个科普视频,感兴趣的同学可以点开观看。

参考内容:

美国费米实验室创造有史以来最强加速器磁场

为了构建下一代强大的质子加速器,科学家们需要最强大的磁场来控制环形加速器当中接近光速的粒子。对于给定的环尺寸,光束的能量越高,加速器的磁场需要越强,以保持光束的正常运行。

美国能源部费米实验室的科学家宣布:利用冷却到4.5开尔文(或零下232.2摄氏度)加速器转向磁铁,他们获得了有史以来最高的磁场强度,创造了14.1特斯拉的世界纪录。此前,美国劳伦斯伯克利国家实验室在同一温度下获得了13.8特斯拉的纪录。

特斯拉单位符号为T,它是磁通量密度(Wb/m 2 )或磁感应强度的国际单位。这种磁场强度比那些冰箱磁贴强了一千多倍。作为对比,医院用的磁振造影主磁铁常为1.5 T及3 T,最高达4 T;太阳黑子的磁场强度为 10 T。

这一成就是粒子物理学界的一个重要里程碑。

科学家们正在研究未来对撞机的设计,可以作为自2009年以来在欧洲核子研究理事会实验室运行的强大的17英里大型强子对撞机的继承者。这样的机器需要加速质子的能量比劳伦斯伯克利国家实验室的设备高几倍。而这需要比大型强子对撞机更强大的环形磁场,大约15特斯拉。

费米实验室负责人,科学家亚历山大·泽洛宾说:“我们多年来一直在努力打破14特斯拉的磁场极限,因此达到这一点是重要的一步。”

未来高能强子对撞机的成功在很大程度上取决于可行的高磁场磁体,而国际高能物理界正在鼓励对15特斯拉的铌锡磁体进行研究。

高强磁场设计的核心是一种称为铌锡的先进超导材料,流过它的电流将产生磁场。当这种材料冷却到非常低的温度时,电流不会遇到阻力,所以它不会失去能量并且不会产生热量。所有电流都有助于产生磁场。换句话说,你会为电子降压获得大量的磁力。

磁场的强度取决于材料可以处理的电流强度。与目前劳伦斯伯克利国家实验室磁铁中使用的铌钛不同,铌锡可以支持制造15特斯拉磁场所需的电流量。但是,当加速器磁铁内部的巨大力作用时,铌-锡材料很脆并且易于破裂。

因此,费米实验室团队开发了一种磁铁设计,可以在线圈中抵抗线圈在运行过程中遇到的每一个应力和应变。数十根圆形导线以某种方式扭曲成电缆,使其能够满足必要的电气和机械规格。将这些电缆缠绕成线圈并在高温下热处理约两周,峰值温度约为1200华氏度,以在操作温度下将铌-锡线转换成超导体。该团队将一些线圈包裹在一个强大的创新结构中,该结构由铁轭和铝夹以及不锈钢表皮组成,以稳定线圈以抵抗可能使脆弱线圈变形的巨大电磁力,从而降低铌锡线的性能。

费米实验小组考虑了所有已知的设计特征,最终并获得了回报。

对于大型强子对撞机以外的圆形对撞机的关键使能技术来说,这是一项巨大的成就。伯克利实验室的资深科学家,美国磁铁开发计划主任索伦·普雷斯特蒙说:“这是一个特殊的里程碑,研究人员热情地接受了这一结果,他们将利用未来对撞机的光束来推动高能物理学的向前发展。“

费米实验室团队正准备冲击15特斯拉的磁场强度。

泽洛宾表示:“在设计这样的磁体时需要考虑很多变量:磁场参数,超导电线和电缆,机械结构及其在装配和操作过程中的性能,磁铁技术以及运行期间的磁铁保护。对于具有记录参数的磁铁,所有这些问题都更为重要。”

在接下来的几个月里,该团队计划加强线圈的机械支撑,然后在今年秋季重新测试磁铁。他们希望达到15特斯拉的设计目标。

他们将目光投向更高的未来。泽洛宾说:“基于这个项目的成功和我们之前获得的经验教训,,我们计划推进铌锡磁磁场强度到17特斯拉。”

泽洛宾说,他们并不止于此。科学家们可以使用由新型先进超导材料实现20特斯拉磁场。

费米实验室原名为美国国立加速器实验室,主要研究领域为高能物理学、粒子物理学。1974年为纪念美国物理学家恩里科·费米而更名为“费米国立加速器实验室”。

该项目得到了美国能源部科学办公室的支持。它是美国磁铁开发计划的重要组成部分,其中包括费米实验室,布鲁克海文国家实验室,劳伦斯伯克利国家实验室和国家高磁场实验室。

费米实验室的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于费米实验室w玻色子、费米实验室的信息别忘了在本站进行查找喔。

捷顺科技(捷顺科技股吧)
没有了!

欢迎扫描关注我们的微信公众平台!

欢迎扫描关注我们的微信公众平台!